FACULTY OF HEALTH AND APPLIED SCIENCES ## **DEPARTMENT OF NATURAL AND APPLIED SCIENCES** | QUALIFICATION: BACHELOR OF SCIENCE HONOURS | | | |--|----------------------|--| | QUALIFICATION CODE: 08BOSH | LEVEL: 8 | | | COURSE NAME: MATERIALS PHYSICS | COURSE CODE: MAP821S | | | SESSION: NOVEMBER 2019 | PAPER: THEORY | | | DURATION: 3 HOURS | MARKS: 100 | | | FIRST OPPORTUNITY EXAMINATION QUESTION PAPER | | | |--|---------------------|--| | EXAMINER(S) | Prof Dipti R. Sahu | | | MODERATOR: | Dr Zivayi Chiguvare | | | | INSTRUCTIONS | _ | |----|--|---| | 1. | Answer any 5 of the 6 questions given. | | | 2. | Write clearly and neatly. | | | 3. | Number the answers clearly. | | ## **PERMISSIBLE MATERIALS** Non-programmable calculator THIS QUESTION PAPER CONSISTS OF 4 PAGES (Including front page and formula sheet) | Quest | estion 1 | | | |------------|---|-------------------|--| | 1.1 | State the primary differences between elastic, anelastic, viscoelastic, and plastic deformation behaviours. | (5) | | | 1.2 | The Young's modulus of a rubber is measured and found to be E = 3.5 MPa for a temperature of T = 300° K. (a) Determine its molar crosslink density, and (b) What is its molecular weight per segment? | (5) | | | 1.3 | (a) Draw a schematic plot showing the tensile engineering stress - strain behaviour for a typical metal alloy to the point of fracture. | (3) | | | | (b) On this plot, superimpose a schematic compressive engineering stress – strain curve for the same alloy. | (3) | | | | (c) Explain any differences between the two curves. | (4) | | | | | | | | Question 2 | | | | | 2.1 | The thermal conductivity of a single-crystal ceramic specimen is slightly greater than a polycrystalline one of the same materials. Why is this so? | (5) | | | 2.2 | A copper wire 15 m long is cooled from 40 to -9 °C. How much change in length will it experience? For cupper α_I = 16.5 x 10 ⁻⁶ (°C) ⁻¹ | (5) | | | 2.3 | (a) Explain thermal shock resistance?(b) What factors control thermal shock resistance of a material? | (7)
(3) | | | | | | | | Quest | Question 3 | | | | 3.1 | Briefly explain why glass-ceramics are generally not transparent. | (5) | | | 3.2 | Determine the penetration depth of the primary electrons in ZnS for an incident beam of energy 10 keV, given that $K = 1.2 \times 10^{-4}$ and $b = 0.0175$. | (5) | | | 3.3 | (a) What is Photoluminescence?(b) State the difference between photoluminescence and fluorescence(c) Mention two uses of photoluminescence. | (4)
(4)
(2) | | | Quesi | destion 4 | | | |------------|--|-------------------|--| | 4.1 | For intrinsic gallium arsenide, the room-temperature electrical conductivity is 3 x 10^{-7} (Ω .m) ⁻¹ . The electron and hole mobilities are, respectively, 0.80 and 0.04 m ² /Vs. Calculate the intrinsic carrier concentration, n_i , at room temperature. Charge of electron =1.6 x 10^{-19} C. | (5) | | | 4.2 | Consider a parallel-plate capacitor of area of $6.45 \times 10^{-4} \text{ m}^2$ and a plate separation of 2×10^{-3} m across which a potential of 10 V is applied. If a material having a dielectric constant of 6.0 is positioned within the region between the plates, compute the following: (a) The capacitance | (3) | | | | (b) The magnitude of the charge stored on each plate(c) The dielectric displacement D(d) The polarization | (2)
(2)
(3) | | | 4.3 | What are the properties of an ideal electrical insulating material? | (5) | | | Question 5 | | [20] | | | 5.1 | Calculate the saturation magnetization for Fe $_3$ O $_4$, given that each cubic unit cell contains 8 Fe $^{2+}$ and 16 Fe $^{3+}$ ions; the unit cell edge length is 0.839 nm; and that Bohr magneton = 9.27 x 10^{-24} A.m 2 . | (5) | | | 5.2 | State two major similarities and differences between ferromagnetic and ferrimagnetic materials. | (5) | | | 5.3 | Explain, with the aid of a diagram, the most important properties of permanent magnetic materials. | (10) | | | Quest | Question 6 | | | | 6.1 | State the general difference in strengthening mechanism between large-particle and dispersion strengthened particle-reinforced composites. | (5) | | | 6.2 | What is the difference between configuration and conformation in relation to polymer chains? | (5) | | | 6.3 | What are the different types of point defects? How are they caused? | (5)
(5) | | | | | | | ## Formula Sheet: Materials Physics **Mechanical properties:** stress σ =F/A, strain ε =(I-I₀)/I₀= Δ I/I₀, stress-strain curve σ = f(ε) = E ε shear stress τ =F/A, shear strain Δ b/h=tan γ , τ = G tan γ , compressibility Δ V/V₀ = - κ p = -p/K $$K = E/(3(1-2v))$$ $G = E/(2(1+v))$ $E/G = 9/(3+(G/K))$ Elastic energy $$W_{def} = E = \int_0^S F(s) ds = \int_0^S Ds ds = \frac{1}{2} DS^2$$ or $E = \frac{1}{2} \frac{\sigma^2}{E} = \frac{1}{2} E \varepsilon^2$ **Thermal properties:** Heat capacity $C = \Delta Q/\Delta T$, specific heat capacity $c = \Delta Q/(m\Delta T)$ Thermal expansion $I_1 - I_0 = \alpha(T_1 - T_0)$, $\Delta V = \gamma \Delta T$ Heat conductivity and heat transition: $$\frac{\Delta Q}{\Delta t} = \dot{Q} = -\lambda \frac{A}{d} |grad(T)| = \lambda \frac{A}{d} \Delta T = \lambda \frac{A}{d} (T1 - T2)$$ H. transfer: $$\frac{\Delta Q}{\Delta t} = \dot{Q} = \alpha A \Delta T = \alpha A (T1 - T2)$$, h. transition: $\frac{\Delta Q}{\Delta t} = \dot{Q} = kA\Delta T = kA(T1 - T2)$ Stefan-Boltzmann law: = $$\,\sigma AT^4$$, Wien's displacement law: $\,\lambda_{\rm max} = \frac{2897,\! 8\,\mu{\rm m\,K}}{T}$ Optical properties: Snell's law: $n_1 sin(\alpha) = n_2 sin(\beta)$, Some of Fresnel's laws: reflection coeff. $$r_p = \frac{\tan(\alpha - \beta)}{\tan(\alpha + \beta)}$$ $r_s = \frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)}$ $transmission \ coeff. \ t_s = r_s + 1 \ , \ n_2 t_p = n_1 (r_p + 1) \ \ , \ reflectivity \ \rho = r^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_2 cos \beta)/(n_1 cos \alpha) t^2, \ transmittivity \ \tau = (n_1 cos \alpha) t$ Brewster angle: $$\tan \alpha_{\rm B} = {\rm n_2/n_1}$$. critical angle: $\sin \alpha_{\rm G} = {\rm n_2/n_1}$, spectr. reflectivity $R(\lambda) = \frac{I_{\rm ref}(\lambda)}{I_0(\lambda)}$ Lambert-Beer law: $I_{\rm ref}(x,\lambda) = I_0(\lambda) \exp[-\alpha(\lambda)x]$ $I_{\rm ref}(x,\lambda) = I_0(\lambda) 10^{-OD}$ $-\log(I/I_0) = ODBel$ Lambert-Beer law: $$I_t(x,\lambda) = I_0(\lambda) \exp\left[-\alpha(\lambda)x\right]$$ $I_t(x,\lambda) = I_0(\lambda)10^{-OD}$ $-\lg(I/I_0) = ODBel$ Abbe number: v=(n(green)-1)/(n(blue)-n(red)) **Electrical properties:** resistance R = ρ L/A , electrical conductivity σ = 1/ ρ , ρ (T) = ρ (T_0)[1 + $\beta(T-T_0)$ Current density $j = I/A = Q/\tau A = neAL/A\tau = nev$, electron mobility $v = \mu_e E$, Lorentz force: $$\vec{F} = q(\vec{v} \times \vec{B})$$, capacity of a plate capacitor $C_0 = \varepsilon_0 \frac{A}{d}$, $C = \varepsilon_r \varepsilon_0 \frac{A}{d}$ flux density $D = \varepsilon_r \varepsilon_0 E$ Susceptibility $\chi_e = \varepsilon_r$ -1, $P = \varepsilon_0 c_e E$, Magnetic properties: MF of a straight wire: $\vec{H}(r) = \mu_0 \frac{I}{r} \overrightarrow{e_{\varphi}}$, coil: $H = \frac{NI}{r}$ magn. flux density: $$\overrightarrow{B_o} = \, \mu_0 \vec{H} \, , \, \vec{B} = \mu_0 \mu_r \vec{H} \, , \, \vec{B} = \, \mu_0 \vec{H} + \mu_0 \vec{M} = \mu_0 \big(\vec{H} + \vec{M} \big) = \, \mu_0 \big(\vec{H} + \chi_m \vec{H} \big) = \, \mu_0 \vec{H} (1 + \chi_m)$$ Faraday effect: $\beta = VdB$ **Metallic materials:** Force on charged particle in field E: $\vec{F}_{el}=q\vec{E}=m\dot{\vec{v}}$ drift velocity: $v_D=\frac{e\tau}{m}E$ Conductivity $$\sigma = \frac{j}{E} = \frac{ne^2\tau}{m}$$ thermo voltage $U_{th} = (S_B - S_A)$ DT Magnetic materials: magn. moment: $\vec{m}=I\vec{A}$, $\vec{m}=m_l\mu_B$, $\vec{\mu}=g_e\mu_B\frac{\vec{s}}{\hbar}$ Etching: Anisotropy: $$A=1-\frac{v_{lateral}}{v_{vertical}}$$ $A=1-\frac{v_{111}}{v_{100}}$ Selectivity: $S=\frac{v_{A-Material}}{v_{A-Mask}}$ $S=\frac{v_{111}}{v_{100}}$